

Options for certifying low carbon HGVs

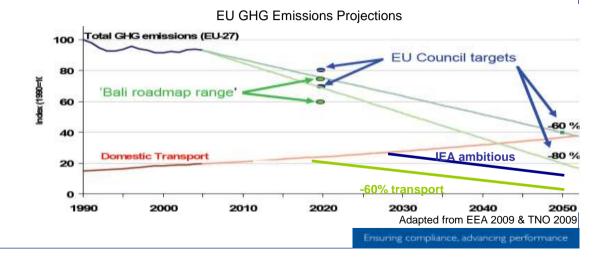
FTA Fleet Engineers Conference 6 October 2010

Jonathan Murray Deputy Director Low Carbon Vehicle Partnership

Neil Fulton, ⁷ Millbrook Proving Ground

Ensuring compliance, advancing performance

Low Carbon Vehicle Partnership


Accelerating a sustainable shift to low carbon vehicles and fuels in the UK

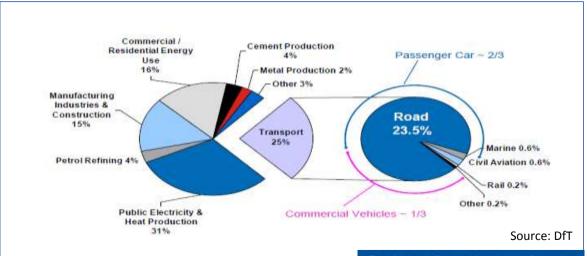
Stimulating opportunities for UK businesses

© LowCVP 2009

EU domestic transport emissions will consume the available CO2 budget on current trends. Even ambitious scenarios leave inadequate headroom for other sectors

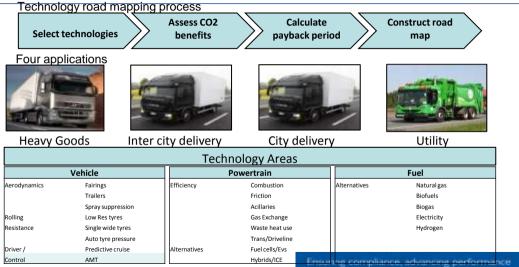
European Commission investigating the regulation of HGV CO2 & fuel consumption

DG Environment study - March 2008 "ACEA has agreed in principle to look at the viability of creating a methodology of measuring the efficiency of the whole vehicle. We understand that this process would model the likely efficiency of any vehicle combination [...]"

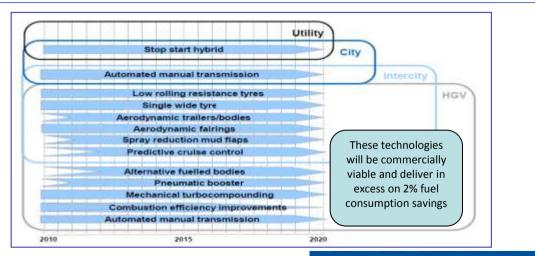


Commission proposal Euro VI

Proposed amendment EU Council - June 2008

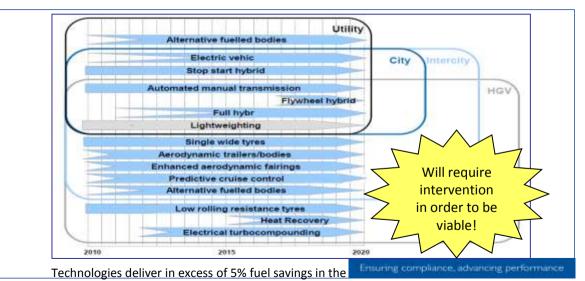

"[...] the Commission should develop a definition and a methodology of energy consumption and CO2 emissions for whole vehicles and not only for engines. [...] should also cover alternative driveline concepts (e.g. hybrid vehicles) and effects [...] of aerodynamics, weight, loading capacity and rolling resistance [...]" "[...] should not prejudice virtual and actual testing"

Climate Change Act 2008 requires UK to reduce emissions by 34% by 2020 and 80% by 2050 compared to 1990


Ensuring compliance, advancing performance

Technologies were assessed through a four stage process four types of operation

Vehicle and powertrain technologies which are likely to be commercially viable by 2020


Technologies delivered 2% fuel savings in the

Ensuring compliance, advancing performance

moderate scenario.

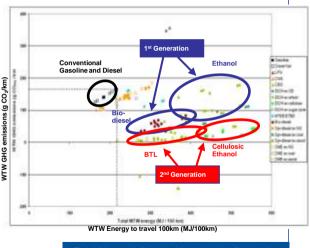
Source: Ricardo

Technologies which can deliver more aggressive fuel savings but are unlikely to be commercially viable

challenging scenario.

Source: Ricardo

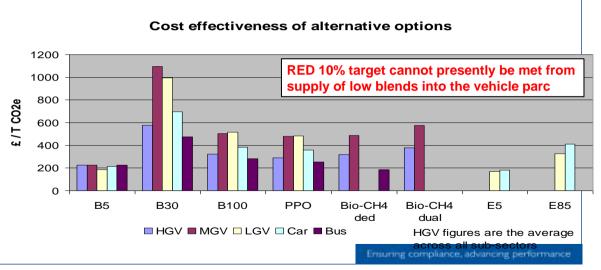
Reducing the carbon footprint of fuels is challenging



White second days this contractor Provid-

1^{st} generation biofuels can deliver up to 80% WTW CO₂ reductions but 2^{nd} generation expected to do better

- 1st generation biofuels deliver 5%-80% CO2 reductions
 - Highly dependent on production process
- 2nd generation biodiesel gives significant CO₂ benefits when compared to 1st generation fuels
 - BTL (Biomass To Liquid) is expected to give 60-90% reductions
 - HVO (Hydrogenated Vegetable Oil) is expected to reduce WTW CO₂ emissions by 40-60%
 - Less harmful emissions are produced by BTL and HVO than diesel
 - · They contain no sulphur or aromatics


To 2020 the challenge is to ready the market for renewable fuels – but which option?

1 st G Bio	2 nd G Bio	H2-IC	H2-FCV	Bio-CH4	EV
	\bigcirc	\bigcirc			\bigcirc
	\bigcirc	\bigcirc		\bigcirc	\bigcirc
		\bigcirc		\bigcirc	\bigcirc
				\bigcirc	\bigcirc
		\bigcirc	\bigcirc		
	\bigcirc	\bigcirc			

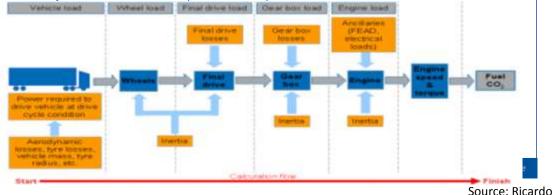
NB: The relative scores do not represent LOWCVP policy

Low blends are (generally) more cost effective than other options particulation for HGVs & buses.

Source: TTR

Recommended approach to measuring fuel consumption and CO2 from HGVs

- Proposed approach needs to be cost effective
- Evidence based and independently witnessed
- Cope with diversity;
 - Range of different vehicle types
 - Range of different operations
 - Range of different technologies
- Propose a combination of
 - Physical testing of vehicles
 - Complemented by computer simulation


Neil Fulton – role of vehicle testing

Approach taken to computer modelling of fuel consumption and CO2

- The model is a backward facing calculation tool (no driver control model). It performs the following actions:
 - Calculates wheel speed and torque conditions based on drive cycle definition and vehicle characteristics
 - Propagates torque and speed information back towards the engine, accounting for system ratios, losses and power consumption

Model validation; model predicted fuel consumption within 5% of measured chassis dynamometer data on the FIGE cycle

Scania P230 Rigid Body – GVM 18t Milbrook Test Model (Stipulated Gears) nstant. Fuel Consumption (kg/s) 1800 1900 Time (s)

The relative fuel consumption between model and test data is -4.5%

- This lays within the **5% margin**

Ensuring compliance, advancing performance

Scania P230 18t Rigid

Source: Ricardo

Summary

- Road transport is an important source of carbon dioxide and fuel consumption is a major cost to the transport industry.
 - We need to reduce both.
- There are a range technologies with the potential to deliver carbon savings.
 - Clear guidance which is backed up with evidence is needed
- To deploy vehicle and powertrain technologies capable of more aggressive reductions in carbon emissions may require incentivises.
- · Market forces will lead to low blend biofuels, delivering limited CO2 WTW savings
 - No clear policy on how to comply with the RED and secure greater WTW CO2 savings.
- At a European and national level a consistent strategy to promote low carbon vehicle and fuel technologies is needed in order to achieve government targets.
- A combination of physical testing supplemented by computer modelling offers an opportunity to measure fuel consumption and CO2 emissions effectively.
 - This should be placed in public domain

Ensuring compliance, advancing performance

Thank You!

020 3178 7859 The Low Carbon Vehicle Partnership

secretariat@lowcvp.org.uk

www.lowcvp.org.uk

Ensuring compliance, advancing performance.

© LowCVP 2009